Year 5 Geometry

Q1.

The diagonals of this quadrilateral cross at right angles.

Tick **all** the quadrilaterals that have diagonals which cross at right angles.

Join dots on the grid to make a quadrilateral that has **3 acute** angles.

1 mark

Q3.

Draw the **reflection** of the shaded triangle in the mirror line.

mirror line

2 marks

The shaded triangle is a reflection of the white triangle in the mirror line.

Write the **co-ordinates** of point **A** and point **B**.

Q5.

This square has two dots on each side.

The dots are equally spaced.

Join two dots to divide the square into two equal parts.

Use a ruler.

1 mark

Q6.

Here is a shaded shape on a grid.

The shape is translated so that point **A** moves to point **B**.

Draw the shape in its new position.

Use a ruler.

2 marks

Q7.

This is a design for an arrowhead.

Upton Junior School

Below is part of a larger scale drawing of the arrowhead.

The drawing has the same size angles as the design.

Draw two more lines to complete the arrowhead **accurately**.

Use an angle measurer (protractor).

2 marks

Q8.

Here is the start of a spiral sequence of right-angled triangles.

Draw **accurately** the next right-angled triangle on the diagram.

You may use an angle measurer.

2 marks

Use an angle measurer to find the size of angle A.

1 mark

Q9.

In this shape, one of the angles is **obtuse**.

Tick (\checkmark) the obtuse angle.

1 mark

Q10.

Look at this star.

Use a ruler to measure **accurately** the **width** of the star, from **P** to **Q**.

Give your answer in millimetres.

mm	
	 1 mark

Use a protractor (angle measurer) to measure angle b.

Q11.

Here is a dial.

The pointer on this dial turns in a **clockwise** direction. The pointer is at **0**.

Which number does it point to after a turn of 270°?

1 mark

The pointer moves from **10** to **11** How many **degrees** does it turn through?

1 mark

Q12.

The diagram shows an isosceles triangle and a square on a straight line.

Calculate angle α .

2 marks

Q13.

Look at this diagram.

Calculate the size of angle x and angle y.

Do not use a protractor (angle measurer).

x = 0

1 mark

1 mark

Q14.

Calculate the size of angle *X*.

Do not use a protractor (angle measurer).

Q15.

Measure **angle A** accurately.

Use a protractor (angle measurer).

1 mark

Not to scale

Calculate the size of angle y in this diagram.

Do not use a protractor (angle measurer).

1 mark

Q17.

The twelve points on this circle are equally spaced.

Join four points to make a **square**.

Use a ruler.

1 mark

Q18.

Here is a shape on a square grid.

For each sentence, put a tick (\checkmark) if it is true.

Put a cross (\mathbf{X}) if it is not true.

Angle **C** is an **obtuse** angle.

Angle **D** is an **acute** angle.

Line **AD** is **parallel** to line **BC**.

Line **AB** is **perpendicular** to line **AD**.

2 mark

Q19.

These two shaded triangles are each inside a regular hexagon.

Under each hexagon, put a ring around the correct name of the shaded triangle.

1 mark

Q20.

Here are three nets of a cube.

On each net draw one more dot so that each cube will have dots on opposite faces.

2 marks

Q21.

Here is a drawing of a cube on an isometric grid.

Draw a cuboid that has:

- the same volume
- half the height.

Q22.

Seb has some cubes with a cross on each face and some cubes with a circle on each face.

He sticks five cubes together to make this shape.

How many crosses and how many circles are there on the outside of the shape?

Number of crosses

1 mark

1 mark

Q23.

Here are four shapes in a Carroll diagram.

	Regular	Not regular
Quadrilateral	A	В

Use this information to write the letters **A**, **B** and **D** in the Venn diagram below.

2 marks